

Руководство по эксплуатации. Дополнительные характеристики.

Graphic Data Manager, RSG40 Мемограф M, PROFIBUS DP Slave

Соединение с PROFIBUS DP посредством подключаемого модуля Profibus DP Slave

People for Process Automation

BA256R/09/c3/06.09 No. 71067352

Software GMU00xA, V2.00.xx

Содержание:

1	Общие сведения	3
	1.1 Требования	3
	1.2 Комплект поставки	3
	1.3 Соединение	4
	1.3.1 Индикатор режима работы	4
	1.3.2 Индикатор состояния	4
	1.3.3 PROFIBUS разъем (DB9F)	4
	1.4 Передаваемые регистры	5
	1.5 Функциональное описание	6
	1.6 Проверка присутствия модуля Profibus	6
2	Передача данных	7
	2.1 Общая информация	7
	2.2 Настройка в меню «Начальные настройки»	7
	2.3 Аналоговые каналы	8
	2.4 Математические каналы	8
	2.5 Цифровые каналы	9
	2.6 Структура данных для циклической передачи данных	10
	2.6.1 Устройство → Profibus master: передача данных	11
	2.6.2 Profibus master → устройство: передача данных	12
	2.6.3 Просмотр слотов	13
	2.6.4 Структура отдельных значений процесса	14
	2.6.4.1 Цифровые состояния	15
	2.7 Аниклическая перелача ланных	
	2.7.1 Передача текста	16
	2.7.2 Пакетная обработка данных	16
	2.7.2.1 Запуск пакета	16
	2.7.2.2 Остановка пакета	17
	2.7.2.3 Установка обозначения пакета	17
	2.7.2.4 Установка имени пакета	17
	2.7.2.5 Установка номера пакета	17
	2.7.2.6 Установка начального значения счетчика	18
	2.7.2.7 Получение состояния пакета	18
	2.7.3 Изменение реле	
	2.7.3.1 Изменение реле	
	2.7.3.2. Чтение состояния реле	
	2.7.4 Изменение пределов допустимых значений	
	2.7.4.1 Инициализация изменения пределов допустимых значений	20
	2.7.4.2 Изменение преледов допустимых значений	20
	2.7.4.3 Применение пределов допустимых значений	20
3	Соединение с Simatic S7	22
•	3.1 Обзор сети	22
	3.2 Проектирование оборулования	22
	3.2.1 Установка и полготовка	22
	3.2.1.1 GSD-файл	
	3.2.2 Проектирование устройства в качестве DP slave	23
	323 Передача настроек	
	3.3 Пример программы	24
	3.4 Аниклический доступ	
	3.4.1 Перелача текста через Slot 0. Index 0 (см 2.7.1)	
	3.4.2 Чтение состояния реле через Slot 0. Index 2 (см. 2.7.3)	
4	Поиск неисправностей	
5	Список аббревиатур и толкования терминов	
6	Алфавитный указатель	
-	1 7	

1 Общие сведения

Обратите внимание на следующие пиктограммы:

Примечание: 🆄

Внимание:

Рекомендации для безопасного ввода в эксплуатацию

Несоблюдение инструкций может привести к повреждению устройства или его поломке!

1.1 Требования

Модуль Profibus может быть использован только для устройств с прошивкой версии V1.02.00 в сочетании с PC версией программного обеспечения 1.23.1.0 и выше.

1.2 Комплект поставки

Устройство с интегрированным модулем Profibus.

Компакт-диск с содержащимся на нем GSD-файлом. Компакт-диск с содержащимся на нем руководством по эксплуатации.

1.3 Соединение

1	Режимы работы	
2	Индикатор состояния	
3	PROFIBUS разъем DB9F	

Таблица 1: Внешний вид задней панели PROFIBUS DP

1.3.1 Индикатор режима работы

Режим работы	Описание
Выключено	Не в сети / нет питания
Зеленый	Устройство в сети, идет обмен данными
Мигающий зеленый	Устройство в сети, свободно
Мигающий красный (1 вспышка)	Ошибка определения значений параметров
Мигающий красный (2 вспышки)	Ошибка конфигурации PROFIBUS

Таблица 2: Функциональное описание индикатора режимов работы

1.3.2 Индикатор состояния

Status LED	Описание
Выключено	Нет питания или не инициализирован
Зеленый	Инициализирован без ошибок
Мигающий зеленый	Инициализирован, идет диагностика
Красный	Ошибка

Таблица 3: Функциональное описание индикатора состояния

1.3.3 PROFIBUS разъем (DB9F)

Контакт	Сигнал	Описание
1	-	-
2	-	-
3	B-Line	Положительный RxD/TxD, уровень RS485
4	-	-
5	GND Bus	Земля (изолированная)
6	+5V Bus Output ¹	+5V termination power (изолированная, максимум 10 mA)
7	-	-
8	A-Line	Отрицательный RxD/TxD, уровень RS485
9	-	-
Корпус	Кабельный экран	Внутренне подключено к Anybus protective ground через обмотку кабеля в соответствии со стандартом PROFIBUS.

Таблица 4: Назначение контактов для разъема PROFIBUS

 1 Любой ток от этого вывода будет влиять на общее энергопотребление модуля.

1.4 Передаваемые регистры

Модуль Profibus не имеет каких-либо внутренних резисторов согласованной нагрузки. Тем не менее, 6 контактов снабжены изоляцией до 5V для периферийного согласующего элемента (см. 1.3.3 PROFIBUS разъем (DB9F)).

Согласно рекомендациям в IEC 61158 / EN 50170, для подключения к PROFIBUS следует использовать 9-контактный D-Sub разъем с интегрированной шиной резисторов нагрузки.

Рисунок 1: Profibus разъем в соответствии с IEC 61158 / EN 50170

PROFIBUS-DP контактная группа (в соответствии с рисунком 2):

Pin No.	Сигнал	Значение
Корпус	Экран кабеля	
3	B-Line	RxTx (+)
5	GND Bus	Земля (изолированная)
6	+5V Bus Output	Питание
8	A-Line	RxTx (-)

Таблица 5: Контакты Profibus разъема

1.5 Функциональное описание

Profibus master – ведущая станция (клиент). Profibus slave – ведомое устройство (сервер).

Модуль Profibus позволяет подсоединить устройство к PROFIBUS DP в режиме DP slave для циклической передачи данных.

Поддерживается скорость передачи данных: 9.6k, 19.2k, 45.45k, 93.75k, 187.5k, 500k, 1.5M, 3M, 6M, 12Мбод.

1.6 Проверка присутствия модуля Profibus

С помощью функции «**Bus interface**» в /**Главное меню**/**Диагностика**/**Симулирование**/**Данные прибора**/ **ENP**/**Оборудование** можно проверить, используется ли модуль Profibus. Здесь также указаны версия программного обеспечения и серийный номер.

Group 1	11.	12.2007 14 14		SD: 0%
	/ Device informat	ion / ENP / Hardware	D:-:4-14	
	Power supply	:6 digital, 6 relay		
	SW version	: GDU00xA V1.00.00		
	Serial no.	:87654321		
	Communication	: available		off
	Bus interface	: Profibus DP		
	SW version	: 2.05.01		
	Navigator	: 35871		
	X Back		-	
Back		Help Digital 1		

Рисунок 3: Проверка присутствия модуля Profibus

2 Передача данных

2.1 Общая информация

В направлении от **Profibus master** к устройству возможно передавать:

- Аналоговые значение (мгновенные значения);
- Цифровые состояния.

В направлении от устройства к Modbus master возможно

передавать:

- Аналоговые значение (мгновенные значения);
- Интегрированные аналоговые значение;
- Математические каналы (результаты: состояния, мгновенные значения, время работы, счетчики);
- Интегрированные математические каналы;
- Цифровые значения;
- Счетчик импульсов (общий счетчик);
- Время работы;
- Время работы с цифрами.

2.2 Настройка в меню «Начальные настройки»

Модуль Profibus необходимо перезапустить в случае изменения настроек устройства, способных повлиять на передачу данных.

Результат: Profibus модуль отключается от DP шины и регистрируется заново через несколько секунд. Это вызывает состояние "невозможно собрать группу" ("assembly rack failure") в PLC-контроллере. На примере Simatic S7, PLC переключается в состояние ОСТАНОВ и должно быть вручную переведено в состояние РАБОТА. Во избежание прерывания необходимо передать "assembly rack failure" ОВ 86 на PLC, в результате чего PLC не переключится в состояние ОСТАНОВ, красный индикатор будет коротко мигать, и PLC продолжит работать в состоянии РАБОТА.

Адрес slave-устройства можно указать в меню /Начальная настройка/Система/PROFIBUS DP (см. Рисунок 4). Пожалуйста, устанавливайте значение меньше 126. Скорость передачи будет определена автоматически.

⊁ Setup / System / Profit	bus DP	15000 / 000
Slave address X Back	:5	
Esc ←	→ OK ← = Accept/Next po	sition

Рисунок 4: Ввод адреса slave-устройства

Все аналоговые (40) и цифровые (14) входы доступны и могут быть использованы в качестве входа Profibus DP, даже если они не доступны в качестве подключаемых карт.

2.3 Аналоговые каналы

Profibus master → устройство:

В меню /**Начальная установка**/**Входы**/**Аналоговые входы**/**Аналоговый вход X** в качестве параметра **Сигнал** устанавливаем **Profibus DP**. Аналоговый канал, настроенный таким образом, может быть использован для циклической передачи данных (модуль х AO-PA), как описано в разделе 2.6.2.

🖋 Setup / In	puts / Analog inputs / Analog input 6	20000 / 005	🖌 Setup / Inputs / Ana	log inputs / Analog input 6	20015 / 005
Signal	: Switched off		Signal	: Profibus DP	
X Back			Channel ident.	: Analog 6	
	Signal		Plot type	: Average	
	Switched off		Engineering unit	:%	
	Current		Decimal point	: One (X,Y)	
	Voltage		Zoom start	:0,0 %	
	Resistance therm., RTD		Zoom end	: 100,0 %	
	Thermocouple		 Totalization 		
	Pulse counter		Copy settings	:No	
	Frequency input		X Back		
	Profibus DP				
	X Esc				
	ОК				
Ess			Back	Hale	
ESC	Help OK		Back	Help	

Рисунок 5: Установка аналогового канала для Profibus DP

Рисунок 6: Выбор желаемого канала

Устройство \rightarrow Profibus master:

Для передачи аналогового канала на Profibus master, канал должен быть настроен согласно описания в разделе 2.6.1 (модуль х AI-PA).

2.4 Математические каналы

Устройство \rightarrow Profibus master:

Математические каналы опционально доступны в меню /**Начальная установка**/ **Входы**/ **Математические**. Результаты могут быть переданы на Profibus master, как описано в разделе 2.6.

2.5 Цифровые каналы

Profibus master → устройство:

В меню /**Начальная установка/Входы/Цифровые входы/Цифровой вход X** в качестве параметра **Функция** устанавливаем **Profibus DP**. Цифровой канал, настроенный таким образом, может быть использован для циклической передачи данных (модуль 8 DO), как описано в разделе 2.6.

🖌 Setup /	Inputs / Digital inputs / Digital input 13	40000 / 012					
Function	: Switched off						
X Back	K Back Function						
	Switched off Control input On/off event Pulse counter Operational time Event+operation time Quantity from time						
	Profibus DP X Esc						
Esc	Help OK						

Рисунок 7: Установка цифрового канала для Profibus DP

Цифровое состояние, передаваемое Profibus master, имеет в устройстве тот же функционал, что и цифровые состояния, присутствующие непосредственно на устройстве.

Устройство — Profibus master: Контроль ввода или события включения/выключения

Цифровое состояние цифрового канала, настроенного соответствующим образом, может быть использовано для циклической передачи данных (модуль 8 DI), как описано в разделе 2.6.1.

Счетчик импульсов или времени работы

Счетчик и время работы цифрового канала, настроенного соответствующим образом, может быть использовано для циклической передачи данных (модуль х AI-PA), как описано в разделе 2.6.1.

События + время работы

Цифровое состояние и счетчик цифрового канала, настроенного соответствующим образом, может быть использовано для циклической передачи данных (модуль 8 DI и х AI-PA), как описано в разделе 2.6.1

2.6 Структура данных для циклической передачи данных

Структура данных для циклической передачи данных может быть настроена в меню /Начальная установка/Приложение /PROFIBUS DP. Доступно 16 слотов для выбора. Каждый может содержать один модуль.

Setup / Application / Prot	ībus DP	
► Slot 1		<u>^</u>
► Slot 2		
► Slot 3		
► Slot 4		
► Slot 5		
► Slot 6		
► Slot 7		
► Slot 8		
► Slot 9		
► Slot 10		
► Slot 11		
Slot 12		
Slot 13		
Slot 14		
► Slot 15		
Slot 18		<u> </u>
Back	Help	

Рисунок 8: Slot overview

Модули могут быть выбраны в зависимости от объема данных и содержания.

1	🖌 Setup / A	pplication / Pro	fibus DP /	Slot 1	39000 / 000
	Master In/O	Master In/Out			
	X Back	Not used 1 AI-PA: 15 By 2 AI-PA: 10 B 3 AI-PA: 15 B 1 AO-PA: 15 B 2 AO-PA: 5 B 2 AO-PA: 5 4 AO-PA: 10 3 AO-PA: 10 8 DO: 2 Byte y Fec	rte lyte Word Nyte Byte Byte Word	ОК	
	Esc		Help	OK	

Рисунок 9: Выбор модуля

Имя определяет инструкции ввода/вывода для Profibus master и соответствует имени модуля в GSD-файле.

Описание имен модулей:

- Число определяет количество значений, которое должно быть передано;
- AI/DI: Master In, т.е. устройство \rightarrow Profibus master;
- AO/DO: Master Out, т.е. Profibus master \rightarrow устройство;
- -РА суффикс обозначает, что структура данных состоит из 4 байт для числа с плавающей точкой (старший значащий бит в начале) и затем 1-ого байта на состояние измеренного значения;

•	В конце указывается длина модуля.	
---	-----------------------------------	--

Модуль	Использование
AI-PA 5 Byte	Аналоговый канал (интегрированное и мгновенное значения),
AI-PA 10 Byte	Математический канал (результаты: мгновенные значения, время работы, счетчики)
AI-PA 15 Byte	Цифровой канал (контроль ввода, счетчик импульсов, (события +) время работы,
AI-PA 10 Word	величина от времени)
DI 2 Byte	Математический канал (результат: состояние)
	Цифровой канал (события включения/выключения, события (+ время работы))
AO-PA 5 Byte	Аналоговый канал (мгновенное значения)
AO-PA 10 Byte	
AO-PA 15 Byte	
AO-PA 10 Word	
DO 2 Byte	Цифровой канал (контроль ввода, события включения/выключения, счетчик
	импульсов, время работы, события + время работы, величина от времени)

Таблица 6: Описание модулей Profibus

2.6.1 Устройство → Profibus master: передача данных

Аналоговый канал, счетчик или время работы

В меню /Начальная установка/Приложение/Profibus DP/Slot x, параметр Master In/Out устанавливается в один из модулей AI-PA, например 4 AI-PA.

Once the byte address has been selected within the module, the desired analog channel is selected. If integration is activated in the analog input, the user can choose between the instantaneous value and the counter (integration).

При выборе адресов байт для модуля можно указать необходимый канал. Если интегрирование доступно для аналогового входа, пользователь может выбрать между мгновенным значением и счетчиком (интегрированным значением).

I	🖌 Setup / Aj	oplication / Pr	ofibus DP / S	lot 1	39005 / 00
	Master In/Ou	ut	: 4 AI-PA:	10 Word	
	Byte 04		: Switched	l off	
	Byte 59		: Switched	l off	
	Byte 1014		- Switcher	loff	
	Byte 1519	Byte 04			
	X Back	Switched off			
		Analog 1			
		Analog 6			
		Math 1			
		X Esc			
				ОК	
					-
	Fee		Halp	OK	
1	LSU		rielp		

Рисунок 10: Выбор необходимого канала, устройство → Profibus master

🖋 Setup / A	pplication / Pr	rofibus DP / SI	ot 1 (4 AI-PA: 10	Word)	39010 / 000
Master In/O	ut	:4 AI-PA:	10 Word		
Byte 04		: Analog 1			
>		: Instantan	eous value		
Byte 59		: Switched	off		
Byte 1014		 Switched 	off		
Byte 1519	>				_
X Back	Instantaneo	us value			
	Counter				
	X Esc				
			ОК		
					_
Esc		Help	OK		

Рисунок 11: Канал выбран, устройство → Profibus master

Цифровой канал

В меню /Начальная установка/Приложение/Profibus DP/Slot x, параметр Master In/Out устанавливается в модуль 8 DI.

При выборе адресов бит для модуля можно указать необходимый цифровой канал.

Рисунок 12: Выбор необходимого модуля, устройство → Profibus master

🖋 Setup /	Application / F	Profibus DP / Slot 2	39005 / 001
Master In/	Out	:8 DI: 2 Byte	
Bit 0.0		: Switched off	
Bit 0.1		: Switched off	
Bit 0.2		: Switched off	
Bit 0.3		· Switched off	
Bit 0.4	Bit 0.0		
Bit 0.5	Switched of	ff	
Bit 0.6	Digital 1		
Bit 0.7	X Esc		
X Back		ОК	
Esc		Help OK	
Duovino	12. Dr	1600 Huthpopop	VOTROŬOTRO

Рисунок 13: Выбор цифрового канала, устройство → Profibus master

2.6.2 Profibus master → устройство: передача данных

Аналоговый канал

В меню /Начальная установка/Приложение/Profibus DP/Slot x, параметр Master In/Out устанавливается в один из модулей AI-PA, например 4 AI-PA.

При выборе адресов байт для модуля можно указать необходимый канал. Далее указывается тип данных (мгновенное значение или счетчик (интегрированное значение)).

Доступны только аналоговые каналы, которые были выбраны для работы с Profibus DP (см. раздел 2.3).

🖌 Setup / A	pplication / Profibus DP / Slot 3	39000 / 002
Master In/O	Master In/Out	1
<i>X</i> Back	Not used	
Eas	Hala OK	

Рисунок 14: Выбор необходимого модуля, Profibus master \rightarrow устройство

🗡 Setup / Applicatio	n / Profibus DP / Slot 3	39005 / 00
Master In/Out	: 4 AO-PA: 10 Word	
Byte 04	: Switched off	
Byte 59	: Switched off	
Byte 1014	: Switched off	
Byte 1519	· Switched off	
X Back Byte 0	4	
Switche	ed off	
Analog	6	
X Esc		
	ОК	
Esc	Help OK	
Рисунок 15:	Выбор аналогового кана	ала, Profibus mas
N VOTROŬOTR	0	

Цифровой канал

В меню /Начальная установка/Приложение/Profibus DP/Slot x, параметр Master In/Out устанавливается в модуль 8 DO.

При выборе адресов бит для модуля можно указать необходимый канал.

	5		Lista	01/		1
ļ	ESC		Help	UK		
	Рисунок	16: Вы	бор необ	бходимс	ого модуля Profibus	P
	master –	→ устроі	іство			_

🌶 Setup / 🖉	Application / P	rofibus DP / S	lot 4	39005 / 00
Master In/C	Dut	:8 DO: 2	Byte	
Bit 0.0		: Switched	loff	
Bit 0.1		: Switched	loff	
Bit 0.2		: Switched	loff	
Bit 0.3		Switched	loff	
Bit 0.4	Bit 0.0			
Bit 0.5	Switched o	ff		
Bit 0.6	Digital 13			
Bit 0.7	X Esc			
X Back			ОК	
	-			
	-			

2.6.3 Просмотр слотов

Для проверки вместе с именами модулей отображается информация о том, как они были настроены на Profibus master.

1	🖌 Setup / Application / Profibus DP	
	Slot 1 (4 AI-PA: 10 Word)	4
	▶ Slot 2 (8 DI: 2 Byte)	I
	Slot 3 (4 AO-PA: 10 Word)	I
	Slot 4 (8 DO: 2 Byte)	I
	► Slot 5	
	► Slot 6	I
	► Slot 7	I
	► Slot 8	I
	► Slot 9	I
	► Slot 10	I
	► Slot 11	I
	► Slot 12	I
	► Slot 13	I
	► Slot 14	1
	► Slot 15	
	Clot 1R	2
	Back Help	

Рисунок 18: Просмотр слотов после внесения изменений

Пустые слоты игнорируются и не генерируют конфигурационных байт.

Просмотр можно вызвать через веб-браузер (Ethernet опционально). URL: http://192.168.100.7/fieldbus

Profibus DPV1 V2.05.01 A0090B31 DeviceAddress: 5

Slot 1 Byte 05 Byte 510 Byte 1015 Byte 1520	4 AI-PA: 10 Word Analog input 4 (Analog 4) Analog input 4 (Analog 4) Analog input 5 (Analog 5) Analog input 5 (Analog 5)	CFG: D9h (217d) (Counter) (Counter)
Slot 2 Bit 0.0 Bit 0.1 Bit 0.2 Bit 0.3 Bit 0.4 Bit 0.5 Bit 0.6 Bit 0.7	8 DI: 2 Byte Digital input 1 (Digital 1) Digital input 2 (Digital 2) Digital input 3 (Digital 3) Digital input 4 (Digital 4) Digital input 5 (Digital 5) Digital input 6 (Digital 6) Switched off Switched off	CFG: 91h (145d) (State) (State) (State) (State)
Slot 3	4 AO-PA: 10 Word	CFG: E9h (233d)
Byte 05 Byte 510 Byte 1015 Byte 1520	Analog input 9 (Analog 9) Analog input 10 (Analog 10) Analog input 11 (Analog 11) Analog input 12 (Analog 12)	

Рисунок 19: Веб-страница с просмотром слотов

2.6.4 Структура отдельных значений процесса

Устройство \rightarrow Profibus master:

Значения	Описание	Байты
Аналоговые значения	32-х битное число с плавающей точкой	5
1-20	(IEEE-734) + cocroshue	
Аналоговые значения	32-х битное число с плавающей точкой	5
1-40, интегрированные	(IEEE-754) + состояние	
Математические каналы 1-8, результаты	32-х битное число с плавающей точкой	5
мгновенных значений, счетчики, время	(IEEE-754) + состояние	
работы		
Математические каналы 1-8,	32-х битное число с плавающей точкой	5
интегрированные	(ІЕЕЕ-754) + состояние	
Цифровой счетчик импульсов	32-х битное число с плавающей точкой	5
	(ІЕЕЕ-754) + состояние	
Цифровое время работы	32-х битное число с плавающей точкой	5
	(ІЕЕЕ-754) + состояние	
Цифровое состояние	8 бит + состояние	2
Математический канал	8 бит + состояние	2
Состояние результата		

Таблица 7: Структура отдельных значений процесса, устройство — Profibus master

Profibus master → устройство:

Значения	Описание	Байты
Аналоговые значения	32-х битное число с плавающей точкой (JEEE 754) + состоящие	5
Цифровое состояние	8 бит + состояние	2

Таблица 8: Структура измеренных значений, Profibus master -- устройство

32-х битное число с плавающей точкой (IEEE-754)

Octet	8	7	6	5	4	3	2	1
0	Sign	(E) 2^7	(E) 2^{6}					(E) 2^{1}
1	(E) 2°	$(M) 2^{-1}$	$(M) 2^{-2}$					$(M) 2^{-1}$
2	$(M) 2^{-8}$							$(M) 2^{-15}$
3	$(M) 2^{-16}$							$(M) 2^{-23}$

Sign = 0: Положительное значение

Sign = 1: Отрицательное значение

 $Num = -1^{VZ} . (1+M) . 2^{E-127}$

Е = экспонента, М = мантисса

Состояние числа с плавающей точкой

Устройство \rightarrow Profibus master

10H = цепь разомкнута, значение не используется
 8xH = значение OK
 x.bit 0: нижний предел или уменьшение градиента
 x.bit 1: верхний предел или увеличение градиента
 x.bit 2: ниже диапазона
 x.bit 3: выше диапазона

Иначе = значение не ОК

Profibus master → устройство

80H:	значение ОК
He 80H:	значение не используется (цепь разомкнута)

2.6.4.1 Цифровые состояния

Цифровое состояние описывается 2-мя битами в 2-х байтах.

Байт 0 бит х	= 0:	Состояние "Low"
	= 1:	Состояние "High"
Байт 1 бит х	= 0:	Не наследует
	= 1:	Наследует

Пример:

Рисунок 20: Структура 2 байт, описывающая цифровое состояние

Здесь только биты 0 и 1 (1-й байт) имеют значение. Состояния для них: бит 0 = high и бит 1 = low (байт 0).

2.7 Ациклическая передача данных

2.7.1 Передача текста

С версии прошивки V1.02.00

Тексты могут сохраняться в журнале событий или журнале регистрации изменений. Максимальная длина 40 цифр. Если текст имеет длину более 40 цифр, он будет обрезан при хранении. Текст должен записываться в slot **0**, index **0** (см. раздел 3.4 Ациклический доступ).

Εv	ent log / Audit Trail	14.01.2008 09 02
æ	ABCDE: Fieldbus (Remote)	14.01.2008 09:02:23
	SD card detected.	14.01.2008 09:02:09

Рисунок 21: Ввод текста в журнал событий или журнал регистрации изменений

2.7.2 Пакетная обработка данных

٩

Прошивка V2.00.00 или выше

Пакет можно запустить и остановить. Имя пакета, его обозначение, номер и начальное значение счетчика могут быть настроены с целью дальнейшей остановки пакета. Текстовые значения (ASCII) могут содержать максимум 30 символов. Если текст длиннее 30 символов, он будет обрезан при хранении.

Функции и параметры должны быть записаны через **Slot 0, Index 1** (см. п.3.4 Ациклический доступ).

Функция	Описание	Данные
0x01	Начало пакета	Пакет (от 1 до 4), идентификатор (ID), имя
0x02	Конец пакета	Пакет (от 1 до 4), идентификатор (ID), имя
0x03	Обозначение пакета	Пакет (от 1 до 4), текст (максимум 30 символов)
0x04	Название пакета	Пакет (от 1 до 4), текст (максимум 30 символов)
0x05	Номер пакета	Пакет (от 1 до 4), текст (максимум 30 символов)
0x06	Начальное значение	Пакет (от 1 до 4), текст (максимум 12 символов)

2.7.2.1 Запуск пакета

Если административная функция включена, идентификатор (максимум 8 символов) и имя (максимум 20 символов) должны быть переданы через разделитель ';'.

Пример: Запуск пакета номер 2

Byte	0	1
	Func	no.
	1	2

Запись "Пакет 2 запущен" сохранится в списке событий. Это сообщение также появится на экране на несколько секунд.

2.7.2.2 Остановка пакета

Если административная функция включена, идентификатор (максимум 8 символов) и имя (максимум 20 символов) должны быть переданы через разделитель ';'.

Приме	p:	Oc	ганов	ка па	кета 2	2, фун	кция	админ	истр	ирова	ния вн	слюче	на (II	D:"IDS	SPS",	имя "RemoteX")
Byte	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	
	Func	no.	49	44	53	50	53	3B	52	65	6D	6F	74	65	58	
	2	2	Ί'	'D'	'S'	'P'	'S'	';'	'R'	'e'	'm'	'o'	'ť'	'e'	'X'	

Запись "Пакет 2 остановлен" и "Remote (IDSPS)" сохранятся в списке событий. Это сообщение также появится на экране на несколько секунд.

2.7.2.3 Установка обозначения пакета

Может быть задано только до запуска пакета. Устанавливать не обязательно, если этого не требуют настройки устройства (прямой доступ 16070).

Пример: Обозначение "Identifier" для пакета номер 2

Byte	0	1	2	3	4	5	6	7	8	9	10	11
	Func	no.	49	64	65	6E	74	69	66	69	65	72
	3	2	'I'	'd'	'e'	'n'	'ť'	'i'	'f'	'i'	'e'	'r'

2.7.2.4 Установка имени пакета

Может быть задано только до запуска пакета. Устанавливать не обязательно, если этого не требуют настройки устройства (прямой доступ 16071).

Пример: Имя "Name" для пакета 2

Byte	0	1	2	3	4	5
	Func	no.	4E	61	6D	65
	4	2	'N'	'a'	'm'	'e'

2.7.2.5 Установка номера пакета

Может быть задано только до запуска пакета. Устанавливать не обязательно, если этого не требуют настройки устройства (прямой доступ 16072).

Пример: Номер "Num" для пакета 2

Byte	0	1	2	3	4
	Func	no.	4E	75	6D
	5	2	'N'	'u'	'm'

2.7.2.6 Установка начального значения счетчика

Может быть задано только до запуска пакета. Устанавливать не обязательно, если этого не требуют настройки устройства (прямой доступ 16073).

- Максимальное количество символов 12 (включая '.');
- Допускается показательная функция, например "1.23E-2";
- Допускаются только положительные значения.

Пример: Начальное значение счетчика 12.345 для пакета 2

Byte	0	1	2	3	4	5	6	7
	Func	no.	31	32	2E	33	34	35
	6	2	'1'	'2'	'.'	'3'	'4'	'5'

2.7.2.7 Получение состояния пакета

Может быть использовано для получения состояния любого пакета и последнего состояния подключения. 5 байт должны быть прочитаны из **Slot 0, Index 1**.

Пример: Пакет 2 запущен, состояние подключения "ОК"

Byte	0	1	2	3	4	5
		Comm.	Status	Status	Status	Status
		Status	batch	batch	batch	batch
			1	2	3	4
	0	0	0	1	0	0

Если, например, номер пакета указан после запуска пакета, то в байте 1 будет указано значение 0х03.

Состояния подключения:

- 0: OK;
- 1: Не все необходимые данные были заполнены (обязательные записи);
- 2: Пользователь не вошел в систему;
- 3: Пакет уже запущен;
- 4: Пакет не настроен;
- 5: Пакет находится под управляющим вводом;
- 7: Активна автоматическая нумерация пакетов;
- 9: Ошибка, текст содержит символы, которые не возможно отобразить, текст слишком длинный, не верный номер пакета или функции.

2.7.3 Изменение реле

Прошивка V2.00.00 или выше

Если в настройках реле устройства установлена опция «Дистанционно», реле имеет возможность переключения. Параметры необходимо задавать через **Slot 0, Index 2** (см. п. 3.4 Ациклический доступ).

2.7.3.1 Изменение реле

Пример: Перевод реле 6 в состояние «Включено»:

Byte	0	1
	RelNo	Status
	6	1

2.7.3.2 Чтение состояния реле

Чтение состояния каждого реле. Бит 0 соответствует реле 1.

2 байта должны быть прочитаны из Slot 0, Index 2.

Пример: Реле 1 и реле 6 в состоянии «Включено»

Byte	0	1
	Relays 12-9	Relays 1-8 (hex)
	(hex)	
	0	0x21

2.7.4 Изменение пределов допустимых значений

Прошивка V2.00.00 или выше

Пределы допустимых значений можно изменять. Для задания функций и параметров следует использовать **Slot 0**, **Index 3** (см. п. 3.4 Ациклический доступ).

Функция	Описание	Данные
0x01	Инициализация	
0x02	Применение пределов допустимых значений	
0x03	Изменение пределов допустимых значений	Номер изменяемого предела, Новое значение предела [;dt]

Для изменения пределов допустимых значений необходимо выполнить следующую последовательность действий:

- 1. Инициализация
- 2. Изменение пределов допустимых значений
- 3. Применение пределов допустимых значений

В версии прошивки младше V2.00.04

Последующая инициализация не может быть выполнена до применения пределов допустимых значений. В версии прошивки старше V2.00.04

Все изменения с момента последней инициализации могут быть отменены последующей инициализацией.

2.7.4.1 Инициализация изменения пределов допустимых значений

Подготовка устройства для изменения пределов допустимых значений.

Byte	0	1
	Func	Fill byte
	1	2A

2.7.4.2 Изменение пределов допустимых значений

Значение пределов будут изменены на устройстве, но не будут применены.

Пример: Изменения предела допустимого значения 1 (верхний предел для аналогового входа) на 90.5

Byte	0	1	2	3	4	5
	Func	Limit value	39	30	2E	35
	3	1	'9'	'0'	'.'	'5'

Пример: Изменение предела значения 3 (отклонение аналогового входа) на 5.7 в течение 10 секунд

Byte	0	1	2	3	4	5	6	7
	Func	Limit value	35	2E	37	3B	31	30
	3	3	'5'	'.'	'7'	';'	'1'	'0'

2.7.4.3 Применение пределов допустимых значений

Значения пределов применяются на устройстве и сохраняются в его настройках.

Byte	0	1
	Func	Fill
		byte
	2	2A

2.7.4.3.1 Чтение состояния соединения

Может быть использовано для получения состояния выполнения последней функции по работе с пределами. 1 байт должен быть прочитан из **Slot 0, Index 3**.

Пример: Неверный номер функции

Byte	0
	Comm.
	Status
	1

Состояния соединения:

0: ОК

- 1: Неверный номер функции или предела допустимого значения
- 2: Данные отсутствуют
- 3: Предел допустимого значения не доступен
- 4: Указаны 2 значения градиента
- 5: Функция сейчас недоступна
- 9: Ошибка

3 Соединение с Simatic S7

3.1 Обзор сети

Рисунок 22: Обзор сети

3.2 Проектирование оборудования

3.2.1 Установка и подготовка

3.2.1.1 GSD-файл

В конфигурации оборудования:

Установка должна быть произведена либо с помощью меню **Настройки/Установка GSD-файла** в настройках HW, либо копированием GSD и BMP-файлов в папку **STEP 7** программного обеспечения. Например: c:\...\Siemens\Step7\S7data\GSD c:\...\Siemens\Step7\S7data\NSBMP

Рисунок 23: Просмотр устройства в каталоге оборудования

3.2.2 Проектирование устройства в качестве DP slave

В настройках HW:

- 1. Перенести устройство Memograph M из Каталог → PROFIBUS DP → Дополнительные полевые
- устройства→Общие в сеть PROFIBUS DP
- 2. Присвоить используемый адрес

Результат:

Рисунок 24: Устройство, подключенное к сети Profibus-DP

Примечание: Запланированный адрес slave-устройства должен соответствовать адресу реально настроенного оборудования.

Имя модуля и последовательность должны быть присвоены в соответствии с настройками устройства.

(8) Memograph M							
Slot	🚺 DP ID	Order Number / Designation	I Address	Q Address	Comment		
1	217	4 AI-PA: 10 Word	263282				
2	164	1 AO-PA: 5 Byte		256260			
3	145	8 DI: 2 Byte	261262				
4	161	8 DO: 2 Byte		261262			
E							

Рисунок 25: Слоты, занятые устройствами

3.2.3 Передача настроек

- 1. Сохранение и сборка конфигурации;
- 2. Передача настроек системе управления через меню PLC → Загрузка.

Если информация соответствует, символ < появится в верхнем правом углу и продублируется на SD-

дисплее. Если "BUSF" индикатор на PLC включится после передачи настроек, это будет означать, что

планируемая сеть не соответствует физическому состоянию. Необходимо проверить несоответствия.

Если настройки не совпадают, появится следующее сообщение:

Even	t Message	
0	05.12.2007 09:06:49: Error Profibus DP configuration error: Slave: D9,91,E9,A1 - Master: 99, D9	
	ОК	

Рисунок 26: Сообщение в случае ошибки настройки

В этом примере slave имеет 4 заявленных модуля, хотя master объявил только 2.

3.3 Пример программы

Ниже представлена программа, необходимая для записи и вывода значений. Т.к. данные последовательные, используются модули SFC14 и SFC15.

```
// Чтение 4 чисел с плавающей точкой из модуля 4 AI-PA (10 слов)
    CALL "DPRD DAT"
                                           // SFC 14
     ALL "DPRD_DAT" // SFC 14
LADDR :=W#16#107 // адрес входа 263
RECORD :=P#M 22.0 ВУТЕ 20 // чтение 20 байт
     RET_VAL :=MW20
// Запись числа с плавающей точкой в модуль 1 АО-РА (5 байт)
    CALL "DPWR DAT"
                                           // SFC 15
              :=W#16#100
              :=W#16#100 // адрес вывода 256
:=P#M 44.0 ВУТЕ 5 // запись 5 байт
      LADDR
      RECORD
     RET VAL :=MW42
// Чтение цифровых состояний
                      261 // цифровые состояния
0 // передача после флага 0
262 // получение подтверждения статусов
1 // состояние после флага 1
              ΕB
       L
       Т
              MB
       Τ.
              EB
       Т
              MB
// Запись цифровых состояний
              MB
       L
                      2
                                   // цифровые состояния
       Т
              AB
                      261 // передача после вывода байта 261
                                  // получение подтверждения статусов
              MB
                      3
       L
       т
              MB
                      262 // передача после вывода байта 262
```

3.4 Ациклический доступ

На приведенном ниже примере CPU315-2 DP (315-2AG10-0AB0) тест описывает ациклический доступ для передачи текста через Slot 0, Index 0 (см. 2.7.1) и чтение состояние реле через Slot 0, Index 2 (см. 2.7.3).

Рисунок 27: Встраивание устройства в сеть Profibus

Адрес диагностики определяется в меню Настройки/Общие для DP slave. Здесь значение адреса 2046.

Properties - DP slave		×
General Parameter As	signment	
Module Order number: Family: DP slave type:	General Memograph M	GSD file (type file): EH1552.GSD
Designation:	Memograph M	
Addresses Diagnostic <u>a</u> ddress:	2046	Node/Master System PROFIBUS 5 DP master system (1)
SYNC/FREEZE Cap	abilities	
✓ SYNC	EREEZE	✓ Watchdog
<u>C</u> omment:		
		A Y
OK		Cancel Help

Рисунок 28: Установка адреса диагностики

DPV1 задается в меню Настройки/Параметры для DP slave.

Properties - DP slave	×
General Parameter Assignment	
Parameters	Value
□	DPV1
General DP parameters	DPV0
Startup when expected/actual config	
DPV1_Status (0 to 2)	C0,00,00
ОК	Cancel Help

Рисунок 29: Задание DPV1

3.4.1 Передача текста через Slot 0, Index 0 (см 2.7.1)

DB50 "WRREC_DB" 57_Pro3\SIMATIC 300 Station\CPU 315-2 DP\\DB50								
Address	Name	Туре	Initial value	Comment				
0.0		STRUCT						
+0.0	REQ	BOOL	FALSE	Do writing of record				
+2.0	ID	DWORD	DW#16#0	log. address of slave				
+6.0	INDEX	INT	0	Recordnumber				
+8.0	LEN	INT	10	Lenght				
+10.0	DONE	BOOL	FALSE	Record transfered				
+10.1	BUSY	BOOL	FALSE	Writing in progress				
+10.2	ERROR	BOOL	FALSE	Error writing				
+12.0	STATUS	DWORD	DW#16#0	Status / Errorcode				
+16.0	RECORD	ARRAY[039]	B#16#0	Record				
*1.0		BYTE						
=56.0		END_STRUCT						

Создание модуля данных DB50 с "WRREC_DB" структурой

Рисунок 30: Модуль данных DB50

(@DB50 "WRREC_DB" 57_Pro3\SIMATIC 300 Station\CPU 315-2 DP\\DB50_ONLINE								
Address	Name	Туре	Initial value	Actual value	Comment			
0.0	REQ	BOOL	FALSE	FALSE	Do writing of record			
2.0	ID	DWORD	DW#16#0	DW#16#0000000	log. address of slave			
6.0	INDEX	INT	0	0	Recordnumber			
8.0	LEN	INT	10	10	Lenght			
10.0	DONE	BOOL	FALSE	FALSE	Record transfered			
10.1	BUSY	BOOL	FALSE	FALSE	Writing in progress			
10.2	ERROR	BOOL	FALSE	FALSE	Error writing			
12.0	STATUS	DWORD	DW#16#0	DW#16#0070000	Status / Errorcode			
16.0	RECORD [0]	BYTE	B#16#0	B#16#30	Record			
17.0	RECORD[1]	BYTE	B#16#0	B#16#31				
18.0	RECORD [2]	BYTE	B#16#0	B#16#32				
19.0	RECORD [3]	BYTE	B#16#0	B#16#33				
20.0	RECORD[4]	BYTE	B#16#0	B#16#34				
21.0	RECORD [5]	BYTE	B#16#0	B#16#35				
22.0	RECORD [6]	BYTE	B#16#0	B#16#36				
23.0	RECORD [7]	BYTE	B#16#0	B#16#37				
24.0	RECORD [8]	BYTE	B#16#0	B#16#38				
25.0	RECORD [9]	BYTE	B#16#0	B#16#39				
26.0	RECORD [10]	BYTE	B#16#0	B#16#40				
27.0	RECORD [11]	BYTE	B#16#0	B#16#00				
28 0	RECORD[12]	BYTE	B#16#0	B#16#00				

Текст, который необходимо передать, может вводиться в блоки данных, начиная с RECORD[0], в режиме реального времени.

Рисунок 31: Модуль данных DB50 в режиме реального времени

В OB1, команда "WRREC" для SFB53 определяет, что может быть записано в адресованные модулю поля данных.

A AN =	M M M	11.0 11.1 11.2	 	Триггер записи данных Вспомогательный флаг Прерывающий флаг
A	М	11.0		
=	М	11.1		
CALL	"WRREG	C", DB53		
REQ	:=M11	L.2	11	Прерывающий флаг
ID	:=MD2	20	11	Определение slave-адреса
INDEX	K :=MW2	24	//	Длина записи
LEN	:="WF	RREC DB".LEN		
DONE	:="WH	RREC DB".DONE		
BUSY	:="WF	RREC DB".BUSY		
ERROI	R :="WE	RREC DB".ERROR		
STATU	JS:="WH	RREC DB".STATUS		
RECOR	RD:="WE	RREC DB".RECORD		

Эта SFB-команда записывает данные ("WRREC_DB".RECORD DB50) с длинной 10 ("WRREC_DB".LEN) в slave с определенным адресом 0x7FE (2046).

Для закуска соединения используется следующий VAT:

K	¥/	T_1 @	S7_Pro3	B\SIMA	TIC 300 Sta	tion\ 💶 🗖	×
	1	Address	Symbol	Displa	Status value	Modify value	
1		//Start ser	nding				
2		M 11.0		BOOL	📘 true	true	
3		MD 20		DEC	L#2046	L#2046	
4		MVV 24		DEC	0	0	

Рисунок 32: Таблица значений

М11.0 устанавливается в значение «Истина» для запуска передачи. Передача начинается.

М11.0 должен быть сброшен в значение «Ложь» до того, как другой процесс передачи сможет быть запушен.

SD2	2->5	SRD_LOW	DPV1_Write_Req	Req	51->51	14	5F 00	00	0A 30	31	32	33	34	35	36	37	38	39
SD2	2->5	SRD_LOW	DPV1_Poll	Req	51->51	0												
SD2	2->5	SRD_LOW	DPV1_Poll	Req	51->51	0												
SD2	2->5	SRD_LOW	DPV1_Poll	Req	51->51	0												
SD2	2->5	SRD_LOW	DPV1_Poll	Req	51->51	0												
SD2	2->5	SRD_LOW	DPV1_Poll	Req	51->51	0												
SD2	2->5	SRD_LOW	DPV1_Poll	Req	51->51	0												
SD1	2<-5	Passive		Res														
SD2	2->5	SRD_LOW	DPV1_Poll	Req	51->51	0												
SD2	2->5	SRD_LOW	DPV1_Poll	Req	51->51	0												
SD2	2->5	SRD_LOW	DPV1_Poll	Req	51->51	0												
SD2	2->5	SRD_LOW	DPV1_Poll	Req	51->51	0												
SD2	2->5	SRD_LOW	DPV1_Poll	Req	51->51	0												
SD2	2<-5	DL	DPV1_Write_Res	Res	51<-51	4	5F 00	00	0A									

Рисунок 33: Коммуникационный цикл асинхронной работы

3.4.2 Чтение состояния реле через Slot 0, Index 2 (см. 2.7.3)

M12.0 устанавливается в значение «Истина» для процесса чтения. Передача начинается. Перед следующим циклом чтения M12.0 должен быть выставлен в значение «Ложь».

A	М	12.0	//	Триггер чтения данных
AN	М	12.1	11	Вспомогательный флаг
=	М	12.2	//	Прерывающий флаг
A	М	12.0		
=	М	12.1		
CALL	SFB	52 , DB52	//	RDREC
REQ	:=M12	2.2	//	Прерывающий флаг
ID	:=DW#	16#7FE	11	Определение slave-адреса (2046)→Slot 0
INDEX	K :=2		11	Индекс 2
MLEN	:=2		11	Максимальное количество байт для чтения
VALII	:=M10	0.1	11	VALID: данные были получены и являются корректными
BUSY	:=M10	0.2	11	BUSY=1: операция чтения еще не завершена
ERROI	R :=M10	0.3	11	ERROR=1: во время чтения произошла ошибка
STATU	JS:=MD1	L01	11	STATUS: COCTORHUE
LEN	:=MW1	.10	11	Информация о длине полученных данных
RECOR	RD:=MW1	L20	//	Место запси полученных данных

Область назначения должна быть достаточно большой, чтобы принять данные (MLEN). В MW 120 после операции чтения будет располагаться W#16#0008, что означает, что реле 4 включено.

4 Поиск неисправностей

Проблема	Причина	Способ устранения
BUSF индикатор	Настройки устройства и	Проверьте с помощью просмотра слотов
светится на PLC	Profibus master не соответствуют	(см. раздел 2.6.3 Просмотр слотов)
	Адрес slave устройства не	Проверьте адрес slave устройства. См.:
	соответствует	2.2 Настройка в меню «Начальные настройки»
		2.6.3 Просмотр слотов
		3.2.2 Проектирование устройства в качестве DP slave

Таблица 9: Решение проблем

5 Список аббревиатур и толкования терминов

Profibus module:PROFIBUS DP slave подключаемый модуль, который подключен через заднюю панель
устройства.Profibus master:Любое оборудование, такое как PLC или подключаемая плата для PC, которое

обладает функцией PROFIBUS-DP master.

6 Алфавитный указатель

A		C	
Аналоговые каналы	8	Скорость передачи	6
R		Слоты	13
D		Соединение	4
Входы	7	Состояние числа с плавающей точкой	15
Выходы	6	Φ	
И		Функциональное описание	6
Индикатор режима работы	4	11	
Индикатор состояния	4	Ц	
М		Циклическая передача данных	8
141		Цифровое состояние	15
Математические каналы	7	11	
Модули	7	4	
П		Число с плавающей точкой	14
Передача данных	7	G	
Пример программы	24	GSD файл	22
Проектирование оборудования	22	c.	
Просмотр слотов	13	5	
		Simatic S7	22